如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.
1个回答

解题思路:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.

②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;

(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.

(1)①全等,

理由如下:

∵t=1秒,

∴BP=CQ=1×1=1厘米,

∵AB=6cm,点D为AB的中点,

∴BD=3cm.

又∵PC=BC-BP,BC=4cm,

∴PC=4-1=3cm,

∴PC=BD.

又∵AB=AC,

∴∠B=∠C,

∴△BPD≌△CPQ;

②假设△BPD≌△CPQ,

∵vP≠vQ,∴BP≠CQ,

又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,

∴点P,点Q运动的时间t=[BP/t]=2秒,

∴vQ=[CQ/t]=[3/2]=1.5cm/s;

(2)设经过x秒后点P与点Q第一次相遇,

由题意,得 1.5x=x+2×6,

解得x=24,

∴点P共运动了24×1cm/s=24cm.

∵24=16+4+4,

∴点P、点Q在AC边上相遇,

∴经过24秒点P与点Q第一次在边AC上相遇.

点评:

本题考点: 全等三角形的判定;等腰三角形的性质.

考点点评: 此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.