已知四边形OABC是边长为4的正方形,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面
1个回答

1、C(0,4) A(4,0) 直线 l:y=-x+4

2、若OP=AP,此时△OPA为等腰直角三角形,且P为AC中点,因此P(2,2)

若OP=OA,此时P与C重合,P(0,4)

若OA=PA

①如P在第一象限,设P(a,b) 则a/OA=CP/CA,且CA=4√2,CP=CA-PA=CA-OA=4√2-4

解得a=4-2√2,代入l方程得出b=2√2 因此P(4-2√2,2√2)

②如P在第四象限,同理可得P(4+2√2,-2√2)

3、因为B和O关于直线l对称,连结DB,设它与CA的交点为E.那么OE=BE

此E点即为所求(D,E,B此时共线,故OE+DE=DB最小)

由D(0,2) B(4,4)得出DB所在直线方程为:y=(1/2)x+2

再联立AC方程后解得:x=4/3,y=8/3 故E坐标为(4/3,8/3)

如果有新问题 记得要在新页面提问