正项数列{an}的前项和{an}满足:Sn2-(n2+n+1)Sn-(n2+n)=0
收藏:
0
点赞数:
0
评论数:
0
1个回答

(1)解关于Sn的一元二次方程可得:

Sn=-1(舍去)或Sn=n^2+n

n>=2,an=Sn-S(n-1)=2n

a1=1+1=2

综上an=2n

(2)

bn

=(n+1)/[(n+2)²×4n² ]

=(4n+4)/[16(n+2)²×n² ]

=[1/n²-1/(n+2)²]/16

∴Tn

=[1/1²-1/3²+1/2²-1/4²+1/3²-1/5²+----1/(n-1)²-1/(n+1)²+1/n²-1/(n+2)²]/16

=[1/1²+1/2²-1/(n+1)²-1/(n+2)²]/16

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识