已知函数f(x)=sin²x+2sinxcosx+3cos²x+m,x∈R,求1.函数f(x)的单调
1个回答

1.

f(x)=sin²x+2sinxcosx+3cos²x+m

=2sinxcosx+2cos²x+sin²x+cos²x+m

=sin(2x)+cos(2x)+1+1+m

=sin(2x)+cos(2x)+m+2

=√2sin(2x+π/4) +m+2

2kπ-π/2≤2x+π/4≤2kπ+π/2 (k∈Z)时,函数单调递增,此时

kπ-3π/8≤x≤kπ+π/8 (k∈Z)

函数的单调递增区间为[kπ-3π/8,kπ+π/8] (k∈Z)

2.

sin(2x+π/4)=1时,f(x)有最大值[f(x)]max=m+2+√2;

sin(2x+π/4)=-1时,f(x)有最小值[f(x)]min=m+2-√2.

函数值域为[m+2-√2,m+2+√2],又已知函数值域为[2-√2,2+√2],因此

m+2-√2=2-√2

m+2+√2=2+√2

解得m=0.