证明:连接DF,FN,
由CE是正方形的对角线,得到∠DCF=∠NEF=45°,
∵AD∥BC.
∴∠EAD=∠AEN
∵∠DMA=∠NME
又∵M是线段AE的中点,
∴AM=ME.
∴△ADM≌△ENM(ASA).
∴AD=NE
又∵四边形CGEF是正方形,
∴FC=FE.
∴△DCF≌△NEF(SAS).
∴FD=FN,∠DFC=∠NFE,
∴△FDN是等腰三角形,
又∵∠CFN+∠EFN=90°,
∴∠DFC+∠CFN=90°,即∠DFN=90°,
∴△FDN为等腰直角三角形,
又∵M为DN的中点,
∴MD=MF=1/2DN;
∵△ADM≌△ENM,
∴DM=MN.
∴MD⊥MF.