解题思路:①连接AO1,AO2,BO1,BO2根据菱形的判定定理即可得出结论;
②根据垂径定理即可得出结论;
③连接O1O2,AB,BD,根据三角形中位线定理即可得出结论;
④先判断出△BCD是等边三角形,再根据等边三角形外心的性质即可得出结论.
①如图1所示,连接AO1,AO2,BO1,BO2,
∵圆⊙O1与⊙O2是等圆,
∴AO1=AO2=BO1=BO2,
∴四边形AO1BO2为菱形,故①正确;
②∵AD是⊙O2的弦,
∴O2在线段AD的垂直平分线上,
∴点D的横坐标不是点O2的横坐标的两倍,故②错误;
③连接O1O2,AB,BD,
∵y轴是⊙O2的切线,
∴O1O2⊥y轴,
∵AD∥1O2.
∵四边形AO1BO2为菱形,
∴AB⊥O1O2,O1E=O2E,
∴∠BAD=90°,
∴BD过点O2,
∴O2E是△ABD的中位线,
∴AD=O1O2=[1/2]BD,
∴∠ADB=60°,故③正确;
④∵由③知,2AD=BD,
∴CD=BD=BC,
∴△BCD的外心是各边线段垂直平分线的交点,
∵O1O2的中点是△BCD中位线的中点,
∴△BCD的外接圆的圆心不是线段O1O2的中点,故④错误.
故答案为:①③.
点评:
本题考点: 圆的综合题.
考点点评: 本题考查的是圆的综合题,涉及到切线的性质、菱形的判定定理及直角三角形的性质,难度适中.