解题思路:(1)利用条件建立方程组关系,利用f(1),f(3),f(5)的规律,结合等差数列的定义判断f(2n+1)-f(2n-1)是个常数即可.
(2)利用当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3去,求出函数f(x)的解析式.
(1)由
f(1)+f(2)=5
f(2)−f(1)=1,解得f(1)=2,f(2)=3.
所以f(2n+1)-f(2n-1)=[f(2n+1)-f(2n)]+[f(2n)-f(2n-1)]=3+1=4,
所以f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列,公差为4.
(2)当x为奇数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
(x−1)•4
2+2=2x,
当x为偶数时,f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=[1/2•1+
x−2
2•3+2=2x−1
所以f(x)=
2x,x为奇数
2x−1,x为偶数].
点评:
本题考点: 等差关系的确定;函数奇偶性的性质.
考点点评: 本题主要考查抽象函数的应用,以及等差数列的定义和判断,综合性较强.