(1) a3=a1+2d
S3=3a1+3d,所以b3=1/S3=(a1+2d)/(3a1+3d)=1/2
2a1+4d=3a1+3d
a1=d
S3=3a1+3d=6a1
S5=5a1+(5*4/2)d=5a1+10d=5a1+10a=15a
所以S3+S5=21a1=21
a1=d=1
所以Sn=na1+[n(n-1)/2]d=n+n(n-1)/2=(n^2+n)/2
所以bn=1/Sn=2/(n^2+n)
(2)bn=2/(n^2+n)=2/[n(n+1)]
所以S(bn)=2/(1*2)+2/(2*3)+……+2/[n(n+1)]
=2*{(1/1-1/2)+(1/2-1/3)+……+[1/n-1/(n+1)]}
=2*[1-1/(n+1)]
=2-2/(n+1)<2
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!