a∈(π,3/2π),sin(π+a)=4/5,求tan2a 数列{an}前n项和Sn=n^2,求通项公式
1个回答

1,sin(π+a)=4/5

-sina=4/5

sina=-4/5

cosa=-3/5

tana=4/3

tan2a=2tana/(1-tan^2a)=(8/3)/(1-16/9)=(8/3)/(-7/9)=-24/7

2,Sn=n^2

an=Sn-S(n-1)

=n^2-(n-1)^2

=n^2-n^2+2n-1

=2n-1

3,|a|=根号(6^2+8^2)=10

单位向量a=(6/10,-8/10)=(3/5,-4/5)

4,cos2a=1-2sin^2a=1-2(-2/5)^2=1-2*4/25=1-8/25=17/25

sina=-2/5,a∈(π,3/2π)

cosa=-根号(5^2-2^2)/5=-根号21/5

tana=2/根号21=2根号21/21

cosB=-12/13,B∈(π/2,π)

sinB=根号(13^2-12^2)/13=5/13

tanB=-5/12

tan(a+B)

=(tana+tanB)/(1-tanatanB)

=(2根号21/21-5/12)/(1+10根号21/252)

=(24根号21-105)/(252+10根号21)

希望对你有帮助!