解∵点(n,Sn)都在函数f(x)=2x^2-x的图像上;
∴Sn=2n^2-n
Sn-1=2(n-1)^2-(n-1)
=2n^2-5n+3
又Sn=S(n-1)+an
∴an=Sn-S(n-1)
=2n^2-n-(2n^2-5n+3)
=4n-3
又Sn+1=2(n+1)^2-(n+1)
=2n^2+3n+1
数列{bn}是等差数列且bn=Sn/n+p
∵Sn=2n^2-n
S1=1,S2=6,S3=15
∴b1=1/(1+p)
b2=6/(2+p)
b3=15/(3+p)
∴[15/(3+p)]+[1/(1+p)]=2*6/(2+p)
整理得:p(2p-1)=0
∴p=0,p=1/2