(2010•天津模拟)已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0,a≠1).
1个回答

解题思路:(Ⅰ)由题意知a1=a,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),由此可知an=a•an-1

a

n

a

n-1

=a

,所以an=a•an-1=an

(Ⅱ)由题意知a≠1,

b

n

=(

a

n

)

2

+

a(

a

n

-1)

a-1

a

n

b

n

=

(2a-1)

a

2n

-a

a

n

a-1

,由此可解得

a=

1

2

(Ⅲ)证明:由题意知

b

n

=(

1

2

)

n

,所以

c

n

=

1

(

1

2

)

n

+1

-

1

(

1

2

)

n+1

-1

=

2-

1

2

n

+1

+

1

2

n+1

-1

,由此可知Tn>2n-[1/2].

(Ⅰ)S1=a(S1-a1+1)

∴a1=a,.(1分)

当n≥2时,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),

两式相减得:an=a•an-1

an

an−1=a

(a≠0,n≥2)即{an}是等比数列.

∴an=a•an-1=an;(4分)

(Ⅱ)由(Ⅰ)知a≠1,

bn=(an)2+

a(an−1)

a−1an,bn=

(2a−1)a2n−aan

a−1,

若{bn}为等比数列,则有b22=b1b3

而b1=2a2,b2=a3(2a+1),b3=a4(2a2+a+1)(6分)

故[a3(2a+1)]2=2a2•a4(2a2+a+1),解得a=

1

2,(7分)

再将a=[1/2]代入得bn=([1/2])n成立,所以a=[1/2].(8分)

(Ⅲ)证明:由(Ⅱ)知bn=(

1

2)n,

所以cn=

1

(

1

2)n+1−

1

(

1

2)n+1−1=

2n

2n+1+

2n+1

2n+1−1=2−

1

2n+1+

1

2n+1−1(10分)

所以cn>2−

1

2n+

1

2n+1

Tn=c1+c2++cn>(2−

点评:

本题考点: 数列的应用;数列的求和;数列递推式.

考点点评: 本题考查数列知识的综合应用,解题时要认真审题,仔细解答.