求曲线y=sinx和y=cosx在[0,3π/2]上围成的区域的面积
1个回答

在[0,π/4]上,cosx > sinx

在[π/4,5π/4]上,sinx > cosx

在[5π/4,3π/2]上,cosx > sinx

在[0,3π/2]上围成的区域的面积

S = S1 [0,π/4]

+ S2 [π/4,5π/4]

+ S3 [5π/4,3π/2]

= ∫(cosx - sinx)dx [0,π/4]

+ ∫(sinx - cosx)dx [π/4,5π/4]

+ ∫(cosx - sinx)dx [5π/4,3π/2]

= (sinx + cosx) [0,π/4]

+ (-cosx - sinx) [π/4,5π/4]

+ (sinx + cosx) [5π/4,3π/2]

= sin(π/4) + cos(π/4) - sin0 - cos0

- [cos(5π/4) + sin(5π/4)] + [cos(π/4) + sin(π/4)]

+ sin(3π/2) + cos(3π/2) - sin(5π/4) - cos(5π/4)

= 1/√2 + 1/√2 - 0 - 1

- (-1/√2 - 1/√2) + (1/√2 + 1/√2)

+ (-1 + 0) - (-1/√2 - 1/√2)

= √2 - 1 + √2 + √2 + √2 - 1

= 4√2 - 2