方法一:
过C作BK的平行线交AD延长线于N
由ΔDCN≌ΔDBM推得MD=DNΔDMN∽ΔDAC推得MN=AC/2
再由ΔAMK∽ΔANC直接推得 AK=AC/3
方法二:
过C作CG‖AD
由ΔBDM∽ΔBCG推得CG=2DM=2AM
由ΔKAM∽ΔKCG推得AK=KC/2,从而得到
AK=AC/3
方法三:
过D作DH‖AC交BK于H
由ΔMDH≌ΔMAK推得AK=DH
再由ΔBDH∽ΔBCK推得DH=AK=KC/2,从而得到
AK=AC/3
方法四:
过D作DE‖MK,DF‖AB,分别交AC于E、F点
连接DE、DF、KF可以得到三个相似三角形
根据相似比,可以推出AK=KE=EC
由此可以证明AK=AC/3