lg2^x=lg3^y=lg5^z,
x*lg2=y*lg3=z*lg5,
x=ylg3/lg2,z=y*lg3/lg5,
所以2x=2ylg3/lg2,5z=5y*lg3/lg5,
比较2lg3/lg2、5lg3/lg5与3的大小.
2lg3/lg2=log2(9)与3=log2(8)
显然前者大
所以2x大于3y;
5lg3/lg5=log5(3^5)
3=log5(5^3)
再比较3^5和5^3
显然前者大,所以5z大于3y;;
接下来比较2lg3/lg2与5lg3/lg5,
2lg3/lg2=lg3/lg√2,
5lg3/lg5lg3/lg5^(1/5),
比较分数线下的两数,
显然前者大于后者,
所以2lg3/lg2小于5lg3/lg5,
最后5z>2x>3y.