1sinα+cosα=根号2求sin4α-cos4α
1个回答

答案为 1

共用三个基本三角函数恒等式: (sinα)^2+(cosα)^2=1;2(sinα)(cosα) = sin(2α) 及 (cosα)^2 - (sinα)^2 = cos(2α) [2倍角公式]

解: 已知 sinα+cosα=根号2 所以 (sinα+cosα)^2=2

展开得 (sinα)^2+(cosα)^2+2(sinα)(cosα)=2

所以得 2(sinα)(cosα)=1 因为 (sinα)^2+(cosα)^2=1

所以 sin(2α)=1 [利用 2(sinα)(cosα) = sin(2α) 恒等式]

又(sin2α)^2+(cos2α)^2=1 所以 cos(2α)=0

原题 sin4α-cos4α = (2sin2α cos2α) - [(cos2α)^2 - (sin2α)^2] = 0 - [0-1] = 1

捷径: 45度角时 sinα 与 cosα 各为 二分之根号2 即 sinα+cosα=根号2

sin4α-cos4α = sin(180度) - cos(180度) = 0-(-1) = 1