解题思路:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.
根据逆否命题的等价性,只需要判断x+y=3与x=1且y=2的条件关系即可.
若x=0,y=3时,满足x+y=3,但此时x=1且y=2,不成立,即充分性不成立.
若x=1,y=2时,则x+y=3成立,即必要性成立.
即x+y=3是x=1且y=2的必要不充分条件,
即“x≠1或y≠2”是“x+y≠3”的必要不充分条件,
故答案为:必要不充分
点评:
本题考点: 必要条件、充分条件与充要条件的判断.
考点点评: 本题主要考查充分条件和必要条件的判断,逆否命题的等价性判断x+y=3是x=1,y=2的充分不必要条件是解决本题的关键.