解答时应写出文字说明、证明过程或演算步骤.用数学归纳法证明: 1×2×3+2×3×4+…+n×(n+1)×(n+2)=
1个回答

证明:(1)当n=1时,左边=1×2×3=6,右边=

1×2×3×4

4 =6 =左边,

∴等式成立.(2分)

(2)设当n=k(k∈N *)时,等式成立,

即 1×2×3+2×3×4++k×(k+1)×(k+2)=

k(k+1)(k+2)(k+3)

4 .(4分)

则当n=k+1时,左边=1×2×3+2×3×4++k×(k+1)×(k+2)+(k+1)(k+2)(k+3)

=

k(k+1)(k+2)(k+3)

4 +(k+1)(k+2)(k+3)

=(k+1)(k+2)(k+3)(

k

4 +1)=

(k+1)(k+2)(k+3)(k+4)

4

=

(k+1)(k+1+1)(k+1+2)(k+1+3)

4 .

∴n=k+1时,等式也成立.(8分)

由(1)、(2)可知,原等式对于任意n∈N *成立.(10分)