1)微分方程y'=xy的通解?2)y'=2y 满足初始条件y'(0)=2 3)lim n趋向于无穷 (n^2/1-n)s
2个回答

1)∵y'=xy ==>dy/dx=xy

==>dy/y=xdx

==>ln│y│=x²/2+ln│C│ (C是积分常数)

==>y=Ce^(x²/2)

∴原方程的通解是y=Ce^(x²/2) (C是积分常数);

2)∵y'=2y ==>dy/dx=2y

==>dy/y=2dx

==>ln│y│=2x+ln│C│ (C是积分常数)

==>y=Ce^(2x)

∴原方程的通解是y=Ce^(2x) (C是积分常数)

==>y'=2Ce^(2x)

∵y'(0)=2 ==>2C=2

==>C=1

∴y'=2y 满足初始条件y'(0)=2 的特解是y=e^(2x);

3)原式=lim(n->∞){[n/(1-n)]*[sin(1/n)/(1/n)]}

={lim(n->∞)[n/(1-n)]}*{lim(n->∞)[sin(1/n)/(1/n)]}

={lim(n->∞)[1/(1/n-1)]}*{lim(n->∞)[sin(1/n)/(1/n)]}

=[1/(0-1)]*1 (应用重要极限lim(x->0)(sinx/x)=1)

=-1.