如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是 ___ °
2个回答

解题思路:根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.

过C作AP的垂线CD,垂足为点D.连接BD;

∵△PCD中,∠APC=60°,

∴∠DCP=30°,PC=2PD,

∵PC=2PB,

∴BP=PD,

∴△BPD是等腰三角形,∠BDP=∠DBP=30°,

∵∠ABP=45°,

∴∠ABD=15°,

∵∠BAP=∠APC-∠ABC=60°-45°=15°,

∴∠ABD=∠BAD=15°,

∴BD=AD,

∵∠DBP=45°-15°=30°,∠DCP=30°,

∴BD=DC,

∴△BDC是等腰三角形,

∵BD=AD,

∴AD=DC,

∵∠CDA=90°,

∴∠ACD=45°,

∴∠ACB=∠DCP+∠ACD=75°,

故答案为:75.

点评:

本题考点: 三角形内角和定理;三角形的外角性质;等腰三角形的判定与性质;勾股定理.

考点点评: 此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质,勾股定理等知识点,综合性较强,有一定的拔高难度,属于难题.