已知函数 f(x)= 1 2 +lo g 2 x 1-x .
1个回答

证明:(Ⅰ)在函数f(x)图象上任取一点M(x,y),M关于 (

1

2 ,

1

2 ) 的对称点为N(x 1,y 1),

x+ x 1

2 =

1

2

y+ y 1

2 =

1

2 ,∴

x=1- x 1

y=1- y 1 ①.

∵f(x)=

1

2 +lo g 2

x

1-x ,即 y=

1

2 +lo g 2

x

1-x ②.

将①代入②得, 1- y 1 =

1

2 +lo g 2

1- x 1

1-(1- x 1 ) =

1

2 +lo g 2

1- x 1

x 1 =

1

2 -lo g 2

x 1

1- x 1 ,

∴ y 1 =

1

2 +lo g 2

x 1

1- x 1 ,∴N(x 1,y 1)也在f(x)图象上,∴f(x)图象关于点 (

1

2 ,

1

2 ) 成中心对称.

(直接证f(x)+f(1-x)=1得f(x)图象关于点 (

1

2 ,

1

2 ) 成中心对称,也可给分)(5分)

(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=1,

又∵n≥2时, S n =f(

1

n )+f(

2

n )+…+f(

n-1

n ) ③, S n =f(

n-1

n )+f(

n-2

n )+••+f(

1

n ) ④

③+④得2S n=n-1,∴ S n =

n-1

2 .(9分)

(Ⅲ)由(Ⅱ)可知,当n≥2时, a n =

1

(

n-1

2 +1)(

n

2 +1) =

4

(n+1)(n+2) = 4(

1

n+1 -

1

n+2 ) ,

∴当n≥2时, T n =

2

3 +4(

1

3 -

1

4 +

1

4 -

1

5 +…+

1

n+1 -

1

n+2 ) =

2

3 +4(

1

3 -

1

n+2 )=2-

4

n+2 ;

∵当n=1时, T 1 =

2

3 也适合上式,∴ T n =2-

4

n+2 (n∈ N * ) .

由T n<λ(S n+1+1)得, 2-

4

n+2 <λ(

n

2 +1) ,∴ λ>

2

n+2 (2-

4

n+2 ) ,即 λ>

4

n+2 -

8

(n+2) 2 .

令 t=

2

n+2 ,则

4

n+2 -

8

(n+2) 2 = 2t-2 t 2 =-2(t-

1

2 ) 2 +

1

2 ,

又∵n∈N *,∴ 0<t≤

2

3 ,

∴当 t=

1

2 时,即n=2时,

4

n+2 -

8

(n+2) 2 最大,它的最大值是

1

2 ,∴ λ∈(

1

2 ,+∞) .(14分)