如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H
1个回答

(1)证明:∵四边形ABCD是矩形,

∴∠ABE=∠ECF=90°.

∵AE⊥EF,∠AEB+∠FEC=90°.

∴∠AEB+∠BEA=90°,

∴∠BAE=∠CEF,

∴△ABE∽△ECF;

(2)△ABH∽△ECM.

证明:∵BG⊥AC,

∴∠ABG+∠BAG=90°,

∴∠ABH=∠ECM,

由(1)知,∠BAH=∠CEM,

∴△ABH∽△ECM;

(3)作MR⊥BC,垂足为R,

∵AB=BE=EC=2,

∴AB:BC=MR:RC=2,∠AEB=45°,

∴∠MER=45°,CR=2MR,

∴MR=ER=

RC=

∴EM=

=