把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m、n,则二次
1个回答

解题思路:根据抛物线y=ax2+bx+c(a≠0)与x轴交点的情况由△=b2-4ac决定得到△<0,即m2-4n<0;然后利用列表展示所有36种等可能的结果,找到其中满足m2<4n有17种,

再根据概率的概念求解即可.

∵二次函数y=x2+mx+n的图象与x轴没有公共点,

∴△<0,即m2-4n<0,

∴m2<4n,

列表如下:

n

m 1 2 3 4 5 6

1 1,1 1,2 1,3 1,4 1,5 1,6

2 2,1 2,2 2,3 2,4 2,5 2,6

3 3,1 3,2 3,3 3,4 3,5 3,6

4 4,1 4,2 4,3 4,4 4,5 4,6

5 5,1 5,2 5,3 5,4 5,5 5,6

6 6,1 6,2 6,3 6,4 6,5 6,6共有36种等可能的结果,其中满足m2<4n占17种,

所以二次函数y=x2+mx+n的图象与x轴没有公共点的概率=[17/36].

故答案为[17/36].

点评:

本题考点: 抛物线与x轴的交点;列表法与树状图法.

考点点评: 本题考查了抛物线y=ax2+bx+c(a≠0)与x轴交点的情况由△=b2-4ac决定:当△>0,有两个交点;当△=0,有一个交点;当△<0,没有公共点.也考查了利用列表法求概率的方法.