(Ⅰ)∵四边形OFPM是平行四边形,
∴|OF|=|PM|=c,作双曲线的右准线交PM于H,则|PM|=|PH|+2×
a 2
c ,
又e=
|PF|
|PH| =
λ|OF|
c-2
a 2
c =
λc
c-2
a 2
c =
λ c 2
c 2 -2 a 2 =
λ e 2
e 2 -2 ,e 2-λe-2=0.
(Ⅱ)当λ=1时,e=2,|PF|=|OF|.
∴c=2a,b 2=3a 2,双曲线为
x 2
a 2 -
y 2
3 a 2 =1且平行四边形OFPM是菱形,
由图象,作PD⊥X轴于D,则直线OP的斜率为
PD
OD =
C 2 -
a 4
C 2
c-
a 2
c =
15
3 ,则直线AB的方程为y=
15
3 (x-2a),代入到双曲线方程得:
4x 2+20ax-29a 2=0,又|AB|=12,
由|AB|=
1+ k 2
( x 1 + x 2 ) 2 -4 x 1 x 2 ,
得:12=
8
3
(5a) 2 +4×
29 a 2
4 ,
解得a=1,
则b 2=3,
所以x 2-
y 2
3 =1为所求.