AB是抛物线y平方=2px的焦点弦,且AB的模等于m,O是抛物线的顶点 求三角形AOB的面积.
1个回答

设,点A坐标为(t1^2/2p,t1),点B坐标为(t2^2/2p,t2),

抛物线y^2=2px,则焦点坐标为(P/2,0).

令,直线AB的方程为Y=K(X-P/2),

X=(Y+PK/2)/K=(2Y+PK)/(2K).

K=(t2-t1)/[(t2^2-t1^2)/2p]

=2p/(t2+t1).

Y^2=2P*(2Y+PK)/(2K),

ky^2-2py-kp^2=0,

t1+t2=2p/k,

t1*t2=-p^2,

AB=a=x1+x2+p=(t1^2+t2^2)/2p+p=[(t1+t2)^2-4t1*t2]/2p+p,

2p/k^2=a-3p,

k=√[2p/(a-3p)],

y=√[2p/(a-3p)]x-(p/2)*√[2p/(a-3p)],

√[2p/(a-3p)]x-y-(p/2)*√[2p/(a-3p)]=0.

令,三角形AOB的高为h,

利用点到直线间的距离公式,得

h=|-(p/2)*√[2p/(a-3p)]|/√[2p/(a-3p)+1]

=(p/2)*√[2p/(a-p)],

则三角形AOB的面积是=1/2*AB*h

=(ap/4)*√[2p/(a-p)].