已知定义域为(0,+∞)的函数f(x)满足:①x>1时,f(x)<0;②f(12)=1③对任意的正实数x,y,都有f(x
4个回答

解题思路:(1)令x=y=1,即可求得f(1)=0,令x=x,y=[1/x],即可证得f([1/x])=-f(x);

(2)设任意0<x1<x2,则

x

2

x

1

>1,可证得f(x2)-f(x1)<0;

(3)根据②可求得f(2)=-1,从而可得f(5-x)≥f(2),再利用f(x)在定义域内为减函数,即可求得其解集.

证明(1)令x=y=1,则f(1)=f(1)+f(1),f(1)=0,

令x=x,y=[1/x],则f(1)=f(x)+f([1/x])=0,即f([1/x])=-f(x),

(2)∵x>1时,f(x)<0,设任意0<x1<x2,则

x2

x1>1,

f(x2)-f(x1)=f(x2)+f([1

x1)=f(

x2

x1)<0,

∴f(x2)<f(x1),

∴f(x)在定义域内为减函数;

(3)∵f(

1/2])=1,f([1/x])=-f(x),

∴-f(2)=f([1/2])=1得,

∴f(2)=-1,即有f(2)+f(2)=-2,

∴f(2)+f(5-x)≥-2可化为f(2)+f(5-x)≥f(2)+f(2),

即f(5-x)≥f(2),又f(x)在定义域内为减函数,

∴0<5-x≤2,解得3≤x<5.

∴原不等式的解集为:{x|3≤x<5}.

点评:

本题考点: 抽象函数及其应用;函数单调性的性质.

考点点评: 本题考查抽象函数及其用,难点在于(2)用单调性的定义证明f(x)在定义域内单调递减时的变化及(3)中对f(2)+f(5-x)≥-2的转化,突出考查化归思想,属于难题.