如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.
切点为G,连接AG交CD于K.
(1)、连接BG
∵AB是直径
∴∠AGB=90°
∵AB⊥AD即∠AHK=∠AGB=90°
∠HAK=∠GAB
∴△AHK∽△AGB
∴∠AKH=∠EKG=∠ABG
∵EF是切线
∴∠ABG=∠EGK(弦切角=所夹弧上的圆周角)
∴∠EKG=∠EGK
∴KE=GE
(2)、连接DG
∵KG²=KD×GE
即KG/GE=KD/KG
∠DKG=∠GKE(同角)
∴△DKG∽△GKE
∴∠E=∠KGD
∵∠KGD=∠C(同弧上圆周角)
∴∠C=∠E
∴AC∥EF(内错角相等)