对于函数f(x)=lg1+x/1-x,若f(y+z/1+yz)=1,f(y-z/1-yz)=2,其中-1<y&lt
1个回答

注意到:

Ka=1+(y+z)/(1+yz)=(1+y+z+yz)/(1+yz)=(1+y)(1+z)/(1+yz)

Kb=1-(y+z)/(1+yz)=(1-y-z+yz)/(1+yz)=(1-y)(1-z)/(1+yz)

Kc=1+(y-z)/(1-yz)=(1+y-z-yz)/(1-yz)=(1+y)(1-z)/(1-yz)

Kd=1-(y-z)/(1-yz)=(1-y+z-yz)/(1-yz)=(1-y)(1+z)/(1-yz)

所以:

Ka/Kb=[(1+y)/(1-y)][(1+z)/(1-z)]

Kc/Kd=[(1+y)/(1-y)][(1-z)/(1+z)]

因为f(x)=lg[(1+x)/(1-x)]

所以f((y+z)/(1+yz))=lg(Ka/Kb)=lg[(1+y)/(1-y)][(1+z)/(1-z)]

=lg[(1+y)/(1-y)]+lg[(1+z)/(1-z)]

=f(y)+f(z)

同理f((y-z)/(1-yz))=f(y)-f(z)

解方程组:

f(y)+f(z)=1

f(y)-f(z)=2

可得:

f(y)=1.5

f(y)=-0.5