在△ABC中,已知向量……求角A……(高1的题) 见图.
2个回答

向量m+向量n=(cos(3A/2)+cos(A/2),sin(3A/2)+sin(A/2)) [一下省“向量”二字]

|m+n|^2=(cos3A/2+cosA/2)^2+(sin3A/2+sinA/2)^2.

=cos^2(3A/2)+2cos(3A/2)*cos(A/2)+cos^2(A/2)+sin^2(3A/2)+2sin(3A/2)sin(A/2)+sin^2(A/2).

=1+1+2cos(3A/2-A/2).

=2+2cosA.

|m+n|=√[2(1+cosA)]=√3.

√[2*2cos^2(A/2)=√3.

2cos(A/2)=√3.

cos(A/2)=√3/2.

A/2=π/6.

(1) ∴∠A=π/3.

(2) 若b+c=√3a, 试判断△ABC的形状.

由正弦定理,得:

sinB+sinC=√3sinA.

2[sin(B+C)/2*cos(B-C)=√3*2sinA/2*cosA/2.

cosA/2*co(B-C)=√3*sinA/2*cosA/2.

cos((B-C)=√3*sinπ/6.

cos(B-C)=√3/2.

B-C=π/6.

B=C+π/6.

A+B+C=π.

A+C+π/6+C=π.

2C=π-π/6-π/3.

=π/2.

∴C=π/4.

B=5π/12

∵A,B,C均为锐角,∴三角形ABC为锐角三角形.