若函数f(x)=x^3-ax,若f(x)在实数集上单调递增,求实数a的取值范围
1个回答

u < v,

f(u) = u^3 - au,

f(v) = v^3 - av,

f(x)在实数集上单调递增,因此,总有,

0 > f(u) - f(v) = u^3 - au - [v^3 - av]

= u^3 - v^3 - au + av

= (u-v)(u^2 + uv + v^2) - a(u-v)

= (u-v)(u^2 + uv + v^2 - a),

而 u - v < 0,所以,总有,

u^2 + uv + v^2 - a > 0,

u^2 + uv + v^2/4 + 3v^2/4 - a > 0,

(u + v/2)^2 + 3v^2/4 - a > 0,

所以,当 a < 0时,上式总成立,满足题意.

若 a = 0,f(x) = x^3是实数集上的单调递增函数,满足题意.

若a>0.

令 u = 0,v = 0.5a^(1/2),

则,u < v,但

f(u) - f(v) = (u-v)(u^2 + uv + v^2 - a)

= (-v)(v^2 - a)

= -0.5a^(1/2)[0.25a - a]

= 0.375a^(3/2)

> 0,

与f(x)在实数集上单调递增矛盾,因此,

只有 a