已知复数z 1 满足:|z 1 |=1+3i-z 1 .复数z 2 满足:z 2 •(1-i)+(3-2i)=4+i.
1个回答

(1)设z 1=x+yi(x,y∈R),

由|z 1|=1+3i-z 1,得

x 2 + y 2 =1+3i-(x+yi) =1-x+(3-y)i,

1-x=

x 2 + y 2

3-y=0 ,解得

x=-4

y=3 .

∴z 1=-4+3i.

而z 2•(1-i)=1+3i,

∴ z 2 =

1+3i

1-i =

(1+3i)(1+i)

(1-i)(1+i) =

-2+4i

2 =-1+2i,

(2)由(1)知,

OA =(-4,3) ,

OB =(-1,2) ,∴ |

OA| =

(-4 ) 2 + 3 2 =5 , |

OB |=

(-1 ) 2 + 2 2 =

5 .

OA •

OB =|

OA | |

OB |cos∠AOB ,得(-4)×(-1)+3×2= 5

5 cos∠AOB ,

解得 cos∠AOB=

2

5 ,∴ sin∠AOB=

1

5 .

∴△OAB的面积 S=

1

2 ×5×

5 ×

1

5 =

5

2 .