最佳答案:你指的是系数矩阵的秩吧,可以用来判定方程是否有解例如系数矩阵如果是方阵的话,满秩表示方程有唯一解,可以用克莱默法则表示
最佳答案:齐次线性方程解集的秩等于将齐次线性方程组的系数矩阵化的矩阵的秩。你这个都有问题,可能问题不全,m*n矩阵A的秩为r,n元齐次线性方程组Ax=0的解集的秩为n-r
最佳答案:首先增广矩阵的秩一定不小于系数矩阵的秩(因为这只不过是增加了一个列向量)。若增广矩阵的秩大于系数矩阵,则可通过高斯消去法将系数对角化,这将有0=b≠0的情况,矛
最佳答案:.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解齐次线性方程组的系数矩阵秩r(A)
最佳答案:n元线性方程组AX=b无解那么增广矩阵(A b)的秩大于A的秩所以r(-A)=r(A)+1选
最佳答案:仅供参考.我认为选 C.用 f 表示与矩阵 A 对应的线性映射f :K^n -----> K^m.如果齐次方程 A x = b 有非零解,显然 b 在 f 下的
最佳答案:知识点:向量形式:r (a1,...,as,b1,...,bt)
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
最佳答案:显然不对,Ax=0和Bx=0的解空间不一定有包含关系.举个例子A=0 0 00 1 00 0 1B=1 0 00 0 00 0 0
最佳答案:因为 r(A)=r所以 Ax=0 的基础解系含 n-r 个解向量.对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这 n-r+1
最佳答案:5 n=4,r(A)=3,Ax=0 的基础解系含 n-r(A) = 1 个线性无关的向量.Aa1=b,Aa2=b,Aa3=b,A[2a1-(a2+a3)]=02
最佳答案:不能.齐次线性方程组同解的充要条件是它们的行向量组等价行秩相同并不一定行向量组等价
最佳答案:仅由已知条件得不出 r(A)=2.设 Ax=b 的3个线性无关的解 a1,a2,a3则 a1-a3.a2-a3 是 Ax=0 的线性无关的解所以 4-r(A)
最佳答案:若系数矩阵满秩,则齐次线性方程组有且仅有零解,若系数矩阵降秩,则有无穷多解,且基础解系的向量个数等于n-r.
最佳答案:秩的定义是不为0的最大子式(方阵)的阶数,因此不可能大于方程的个数,也不能大于每个方程里面的变量的个数.
最佳答案:这个问题可以这样理解系数矩阵的秩小于增广矩阵的秩时 就是给出更多的限制条件,最后使满足条件的解变成了无解.反之就是限制条件不多,满足条件的解就由越多 当他们相等
最佳答案:根据齐次线性方程组的知识很容易知道,r(A)
最佳答案:3可以把第2列和第3列交换再把交换后的第3列和第4列交换阶梯为3