最佳答案:ax≡b(mod m),存在整数k,使得b=ax-km,∴d=(a,m)整除b.反过来,若d|b,因(a/d,m/d)=1,故存在整数x,k,使得(a/d)x-
最佳答案:将X={x1...},B={b1.}都看成列向量组.则方程化为方程组Ax=b.可知向量b与A线性相关,因此r(A)=r([A,B]).反之.r(A)=r([A,
最佳答案:你说r(A)=n 也是方程有解的充分条件显然是不对的,因为他的增广矩阵比他多一列,所以它的增广矩阵的秩可能为n+1,但若r(A)=m 则它的增广矩阵的秩也必是m
最佳答案:1 充分性.因为|A|不等于0,故A可逆,X=A^(-1)*B.2 必要性.由于AX=B对于任意B有解,则r(AiB)=r(A),且r(AiB)=n,故r(A)
最佳答案:AX=B对于任意B有解任一n维列向量可由A的列向量组线性表示A的列向量组与n维基本向量组ε1,ε2,...,εn等价A的列向量组线性无关|A| ≠ 0.
最佳答案:若Ax=b有解,则b可由A的列向量线性表示; 而 A^TY=0 的解与A^T的行向量正交,所以 A^TY=0 的解与A的列向量正交,故与b也正交.反之逆推回去即
最佳答案:1)充分性:如果线性方程组有两个不同的的解,那么它的差就是导出组(相应的齐次线性方程组)的一个非零解.因之,如果导出组只有零解,哪么方程组有唯一解.2)必要性:
最佳答案:这不矛盾事实上,此时Ax=b有唯一解.A是方阵的前提下:|A|≠0(r(A)=n),方程组Ax=b有唯一解|A|=0(r(A)
最佳答案:因为 AX=B有解,所以 r(A)=r(A,B)所以此时AX=B 有唯一解r(A)=nAX=0 只有零解x≠0时 Ax ≠ 0x≠0时 (Ax)^T(Ax) >
最佳答案:对的.设方程组为AX=b, A=(a1,a2,...,am)必要性.若 |A|≠0, 则 r(A)=m所以a1,a2,...,am线性无关而任意m+1个m维向量
最佳答案:设 α 为W中任一向量则 A'α=0则 α 与 A' 的行向量正交即 α 与 A 的列向量正交即知 W 是由与A的列向量正交的向量构成的b与W正交b是A的列向量