最佳答案:一元函数,函数可微与函数可导是等价概念.不能推出该函数的导数连续.
最佳答案:对一元函数来说,可导与可微是一回事,连续要比它低一级,即可导必连续,反之,连续不一定可导.多元函数可微必可导,反之不真.这里的可导是指偏导数存在,是固定其他变量
最佳答案:一元函数可微和可导是一个概念;可导必连续,连续不一定可导多元函数不必深究吧,这个时候是偏导,不太好说明
最佳答案:1.在X=1处连续且可导,所以,f(x)导数:2x,x小于等于1;a,x大于1.使x=1,则,a=2(由导数得出).f(1)=1=a+b,所以,b=-1.2.f
最佳答案:一元是因为它仅仅是一个平面图,微商在△x趋近于零的情况下曲线上该点的切线斜率,数值上全等于该点导数.而偏导数是从导数中抽象出来的一个定义,适用于多元函数.你可以