最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
最佳答案:可导性都是用导数定义判断的。有不是用导数定义判断的吗?
最佳答案:用文字给你描述一下,函数在该点可导则在该点的左右导数存在、相等且等于在该点的导数值.不妨设这个极值点为极小值点,则左导数依定义可知是小于等于0的(极限的保号性)
最佳答案:楼主说的是导数值大于零,又不是函数值f(x)都大与0,楼上的导数含义都没注意吧.x0的小邻域有且只有一种单调性,搂主的命题是成立的.你看书上都是由导数值的符号判