最佳答案:若函数 f(x) 在闭区间[a,b]上连续,则在积分区间 (a,b)上至少存在一个点 ξ,使∫(b,a) f(x)dx=f(ξ)(b-a)成立.其中,a、b、ξ
最佳答案:存在ξ∈(a,b),使得∫f(x)dx(积分限a到b)=f(ξ)(b-a)
最佳答案:连续函数的导数不一定连续,所以不能把连续函数的介值性运用在导函数上,但达布定理表明了连续函数的导数确实具有介值性
最佳答案:我知道你的疑惑了,注意介值定理考虑的是不相等的两个函数值(设为A,B),对A和B之间(这里是开区间,因为考虑的是之间)的任意数都能取得,再看看它的推论,这里就是