知识问答
最佳答案:将题补全.设A为n阶矩阵,秩(A)=n-1,X1,X2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解是kX1或kX2(要求X1或X2不等于零,即不能是
最佳答案:证明:设 kη+k1ζ1+k2ζ2+...+kn-rζn-r = 0等式两边左乘A,由 Aη=b,Aζi = 0 得kb = 0.因为 AX=b 是非齐次线性方
最佳答案:设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
最佳答案:选 B .初等矩阵都是可逆的,两边左乘以 P^(-1) 就化为 AX=b 了.或者,左乘以 P 相当于交换行,也就是交换两个方程,当然还是同解的了.
最佳答案:因为 r(A)=r所以 Ax=0 的基础解系含 n-r 个解向量.对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这 n-r+1
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
最佳答案:解题思路:线性无关则是要证明x1ξ1+…+xn-rξn-r=0成立,利用基础解系的性质就可以得到该式成立.证明:设存在一组数x,x1,…,xn-r,使xη+x1
最佳答案:DBC没说r(A)=r(A,b)不能保证Ax=b有解对于A,Ax=0 仅有零解,无法确定m与n的关系,从而也不能确定r(A)与r(A,b)的关系对于D,Ax=b
最佳答案:解题思路:可以利用齐次方程组有解的判断定理,也可以利用排除法解答.Ax=b有无穷多个解⇒R(A)=R(B)<n⇒R(A)<n⇒Ax=0有非零解.对(A):如x1
最佳答案:选(A)Ax=0 => AA^TAx=0 => x^TA^TAA^TAx=0 => (A^TAx)^T(A^TAx)=0 => A^TAx=0 => x^TA^
最佳答案:证明:若AX1=0, 则 A^TAX1 = 0即 AX=0 的解都是 A^TAX=0 的解若 A^TAX2 = 0则 X2^T A^TAX2 = 0所以 (AX
最佳答案:A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故 Ax=0 的
最佳答案:1)令 a S1+b S2+ cS3+d n=0.若 d ≠ 0,则 n=-1/d S1 - 1/d S2 - 1/d S3An=A(-1/d S1 - 1/d
最佳答案:怎么没看到你这题目 晚了吧证明:(1)反证.假如s1,s2,s3,n线性相关因为 s1,s2,s3 线性无关所以 n可由s1,s2,s3线性表示所以n是齐次线性
最佳答案:设S1,S2,S3,n对应的系数分别为ki和p,i=1到3;ki*Si+p*n=0两边乘以A,则因为AX=b,可推出p=0,那么kiSi=0,又Si是齐次线性方
最佳答案:k1b1+k2b2+……+kn-rbn-r+kn-r+1a=0,a为非齐次方程的一个特解,上式两边乘以A,证得kn-r+1=0,又因为b1,b2,……,bn-r
最佳答案:初学做这题目, 恐怕你看不懂呢因为 r(A)=n-1所以 Ax=0 的基础解系含 1 个解向量.且 |A|=0.又由 AA*=|A|E=0所以 A* 的列向量都