最佳答案:单就 一元函数,让你求分段点导数,一般是连续的,连续是是该点可导的必要条件,如果不连续 可导无从谈起了.
最佳答案:分段函数连续是,f(x)和g(x)在分段点的函数值相等,和导数相等没关系.依你举得例子,g(x)可以取到0,所以g(0)=A.f(x)不能取x=0,但是它当x从
最佳答案:分段函数在分段点一般都用定义求导数,因为分段点两边趋向不一样.不过特别的对于连续的分段点处,亦可以用'导数极限存在定理'.
最佳答案:需要说明的是,你对右连续的定义理解错了.若函数f(x)右连续,则有 f(x)—>f(0)(x—>0+),也就是说当f(x)在X=0处右连续时,并不能说明f(x)
最佳答案:密度函数在分段点不一定连续,你只要看一下[a,b]区间上的均匀分布,概率密度在这个区间内取值是1/(b-a),在其它地方取值是0. 在a与b两个分段点都是不连续
最佳答案:若f(x,y)在原点有极限,则(x,y)沿任何方式趋于原点(0,0)时,f(x,y)都有同样的极限值.注意上面是以任何方式.因此经常用这个结论的逆否命题来证明f
最佳答案:就是一个函数在某一点求极限,如果极限存在,则为可导,若所得导数等于函数在该点的函数值,则函数为连续可导函数,否则为不连续可导函数.
最佳答案:f(2)=10, 这个是关键.右导数是6,OK.左导数=lim_(x->2-)((3x+1)-10)/(x-2)=3lim_(x->2-)(x-3)/(x-2)
最佳答案:这个是无法保证的.可导可以推出连续,但是一个函数可导是推不出导函数连续的,导函数连续是个非常强的条件.
最佳答案:1.可以有间断,间断点处某些方向的导数不存在,各自连续的区间,当然可以求导,求的是偏微分2.连续性的定义就是 该点的极限值等于该点的函数值,你说的情况,判断是否
最佳答案:当然可以 “直接判断有导数存在就可以判定连续了”,但求左右导数未必比求左右极限简单.
最佳答案:导数(Derivative)是微积分中的重要基础概念.当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δ
最佳答案:告诉你,分段函数在分段点处有两种情况1,在分段点处函数是连续的 2,在分段点处函数是间断的.而对于" 在分段点处函数是连续的" 又有两种情况(1,函数在连续点处
最佳答案:1.{1/y[1+y^2f(xy)]}'y=(-1/y^2)+f(xy)+xyf'(xy){x/y^2[y^2f(xy)-1]}'x=(-1/y^2)+f(xy
最佳答案:分段函数在每一段内一般都可以直接求出导数,对于分段点,只需要根据定义判断左导和右导是否相等就可以了,只有左右相等(并且连续)才可导.
最佳答案:不行,分段函数在分界点处一定要用定义求导.如果分界点处连续,有一条结论:若f(x)在x.的空心邻域内可导,并在x.处连续,并且lim x→x.f ' (x) =