最佳答案:导函数是连续的.因为可导,所以对每一点x0,都有左导数=右导数即f'(x0-)=f'(x0+)=f'(x0)而这正是符合f'(x0)在x0处连续的条件.
最佳答案:f(x)可导和它的导函数f`(x)连续没关系例子:当x≠0,f(x)=x^3/2sin1/x x=0时f(x)=0 根据定义可以验证f(x)在0可导,但f`(x
最佳答案:一切初等函数在其定义域上都是可导的,因此要判断一个函数在某个区间是否可导只需要看该区间是不是定义域上的子区间.而由于可导的函数必然是连续函数,因此一般来说可导函
最佳答案:连续区间指函数的图象在这个区间内没有断点定义域是指这个映射的所有原象的区间意义是不一样的
最佳答案:首先函数可导但并没有说是函数连续,如果该函数不连续,即使区间上各处可导也可能不连续.
最佳答案:书上是对的,有一个很简单的例子,y=1/x 这个函数可导,但是不一定连续,因为x不等于0,同时,它确实是在负无穷到正无穷间不是连续单调的.
最佳答案:显然是可积,导函数积分之后就是原函数,在该点可积表明该点存在原函数
最佳答案:因为一个函数要展开成的泰勒级数必须有任意阶导数,所以光滑连续(有一阶连续导数)的函数未必有泰勒级数,更何谈收敛?
最佳答案:二阶导数在某区间上可导,说明是该函数曲线是连续的,当二阶导数>0时,说明该区间是凹的,当二阶导数
最佳答案:以下函数满足要求,当X在(-无穷大,0】上,f(x)=-X当X在(0,+无穷大)上,f(x)=X以上函数在定义域内连续,在X=0处连续,但左极限不等于右极限,既