最佳答案:线性齐次方程有基础解系,非线性齐次方程解由基础解系和特解两部分组成,所以非齐次也有基础解系
最佳答案:写出方程组对应的增广矩阵为:2 1 -1 1 14 2 -2 1 22 1 -1 -1 1 第2行减去第1行×2,第3行减去第1行~2 1 -1 1 10 0
最佳答案:X1=(1,-3/4,-1/3,1,0) X2=(5,-16/3,-1/3,0,1)通解k1(1,-3/4,-1/3,1,0) ,k2(5,-16/3,-1/3
最佳答案:解: 系数矩阵A=1 1 2 33 4 1 25 6 5 8r3-2r1-r3, r2-3r11 1 2 30 1 -5 -70 0 0 0r1-r21 0 7
最佳答案:齐次线性方程组只需考虑系数矩阵, 因为增广矩阵的最后一列都是0.解: 系数矩阵 =1 -2 4 -72 1 -2 13 -1 2 -4r2-2r1,r3-3r1
最佳答案:系数矩阵的秩为1基础解系含 n-1 个向量:a1=(-1,1,0,...,0,0)a2=(0,0,1,...,0,0)...an-2= (0,0,0,...,1
最佳答案:解: 增广矩阵=1 1 1 1 33 4 1 -1 145 6 3 1 20r3-2r1-r3, r2-3r11 1 1 1 30 1 -2 -4 50 0 0
最佳答案:增广矩阵:1 1 2 -1 22 3 1 -4 54 5 5 -6 9初等变换后:1 0 5 1 10 1 -3 -2 1因此基础解系:l1=[-5,3,1,0
最佳答案:把系数矩阵用初等行变换化成行简化梯矩阵 得到同解方程组确定自由未知量自由未知量取一组 (1,0,0,...),(0,1,0,...)...,(0,0,...,1
最佳答案:系数矩阵 A=[1 1 1 1][2 1 3 5][1 -1 3 -2][3 1 5 6]行初等变换为[1 1 1 1][0 -1 1 3][0 -2 2 -3
最佳答案:首先题目应该交代了α1,α2,α3, α4为Ax=0的基础解系.可见α1,α2,α3, α4为Ax=0的基础解中的极大线性无关组,秩为4.证明:1.证明α1+α
最佳答案:基础解系中解向量的个数为n-r(A)=1,而n=3
最佳答案:(1) A-->r2+2r1,r3+3r1,r2*(1/7)1 2 -3 -20 7 -1 00 14 -2 0r3-2r21 2 -3 -20 1 -1/7
最佳答案:证明:(1) 显然 x0,x0+a1,x0+a2...x0+an-r 都是AX=b的解.设 k0X0+k1(X0+a1)+k2(x0+a2)+...+kn-r(
最佳答案:A=1 1 1 1 2 4 3 13 5 2 44 6 3 5r2-2r1,r3-3r1,r4-4r11 1 1 1 0 2 1 -10 2 -1 10 2 -
最佳答案:系数矩阵 A=1 -2 -1 -1 52 1 -1 2 -33 -2 -1 1 -22 -5 1 -2 2用初等行变换化为行最简形1 0 0 0 7/40 1
最佳答案:可以 只要是解且线性无关就行
最佳答案:(n1+2n2,kn1-4n2+kn3 ,n1+2n2-n3) = (n1,n2,n3)KK =1 k 12 -4 20 k -1|K| = 2k+4所以 k≠
最佳答案:对,当做到最后一步,有了自由变量后,赋值时有无穷赋值方式.你说得是常见的赋值方式,图上给出的是根据表达式的特点,能得到整数的基础解系对应的赋值方式.对自由变量赋