最佳答案:设y=f(x)是一个单变量函数,如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导.条件:1)若f(x)在x0处连续,则当a趋向于0时,
最佳答案:函数在该点的左 右导数存在 且相等,可导能推出连续,但是连续不一定可导
最佳答案:f(x)=g(x)能推出导数也相等,反之不成立,比如f(x)=g(x)+1.所以题目中应填必要不充分条件
最佳答案:解题思路:通过举反例可得充分性不成立,而必要性成立,从而得出结论.由“函数f′(x0)=0”,不能推出“可导函数f(x)在点x=x0处取到极值”,例如f(x)=
最佳答案:答案错,是必要不充分.由f'(x0) = 0 推不出极值点,因为有可能是拐点(说明不充分);f(x)在R上可导,可以说明极值点处一定有f'(x0) = 0(说明
最佳答案:是必要不充分条件f'>0 ==> 单调递增但是 单调递增 也可以有个别点 的导数等于0比如 函数 f(x)=x^3 单调递增 但是 在x=0处 导数为0
最佳答案:1C再加上二阶导数不为0就是充要了2f'(x)=3x^2+6x-9=0x=1或x=-3f''(x)=6x+6f''(-3)
最佳答案:函数f(x)在点x 0处取得极值则f′(x 0)=0,但f′(x 0)=0时,函数f(x)在点x 0处取得极值不恒成立,故函数f(x)在点x 0处取得极值的必要
最佳答案:先举个例子,令f(x) = x^2*sin(1/x),把可去间断点补充进去令,f(0) = 0.则知道f(x)处处可导.并且点 x = 0 就是第二类间断点.我