最佳答案:顶楼上,洛朗级数展开式唯一,所以不管你用什么方法求得的展式都一样.sinz是整函数,所以sinz的洛朗展开式也就是泰勒展开式.
最佳答案:在0处泰勒级数收敛半径为pi/2;在0处罗伦级数收敛半径为pi/2
最佳答案:f(z)= - Sum[((z-1)^(2k+1) + (z-1)^2k) / (-4)^(k+1) ,{k,0,Infinity}] ;|z-1|2
最佳答案:Σz^n的收敛圆是|z|=1,上面点可以表示成e^(iα),α为实常数根据等比级数求和公式,而e^[i(n+1)α]的极限对任意α≠0是不存在的(实际上∞是e^
最佳答案:Σz^n的收敛圆是|z|=1,上面点可以表示成e^(iα),α为实常数根据等比级数求和公式,而e^[i(n+1)α]的极限对任意α≠0是不存在的(实际上∞是e^
最佳答案:1.cos(z)=(e^(iz)+e^(-iz))/2=1+(iz)^2/(2!)+(iz)^4/(4!)+.=1-z^2/2!+z^4/4!+.2.复变函数没
最佳答案:做洛朗级数的题,首先要看函数的奇点,然后去看题目让你在什么范围内展开成关于什么的洛朗级数,如f(Z)=1/[(z-1)(z-2)]在0
最佳答案:zsin(1/z)在复变的中的极限不是0,证明如下设z=x+yi2、z按x=0,y→0方向趋于0有lim zsin(1/z)=lim yisin(1/(yi))
最佳答案:∑[ n=1,∞]{[(-1)^n](z^n)/(n!)},Cn=(-1)^n]/(n!),Cn+1=(-1)^(n+)]/[(n+1)!]λ=lim[n→∞]
最佳答案:没有学过复变函数,不过在高等数学的幂级数部分求收敛半径的时候确实是有两种办法可以计算的一种就是对于系数相比或者开n次方,求极限,然后去极限的导数则为收敛半径而另