知识问答
最佳答案:(1)这符合抛物线的定义,定点 F(1,0) 为焦点、定直线 x=-1 是准线,方程 y²=4x;(2)若 A、B 点的横坐标分别为 Xa、Xb,则 AB=AF
最佳答案:因点P在曲线y=2x²+1上,故可设点P(t,2t²+1).设点M(x,y),由题设可知,向量PM:MA=2:1.===>PM=2MA.===>(x-t,y-2
最佳答案:1、双曲线是x^2-y^2=1吗?若是,解答如下:c=√2,焦点坐标F1(-√2,0),F2(√2,0),根据条件可知其轨迹是长轴为4的椭圆,和双曲线共焦点,2
最佳答案:设M(a,b),N(c,d),P(x,y).M,N在圆上,a^2+b^2=16,c^2+d^2=16,AM⊥AN,b/(a-2)=-(c-2)/d,bd+ac-
最佳答案:(x-3)^2+y^2 = (25/3 - x)^2 * 4/9结果显然是一个椭圆
最佳答案:(1)设B点坐标为(-1/2,t),由“2OC向量=OA向量+OB向量”可知,C为AB中点,所以C(0,t/2),由“点M满足BM向量×e向量=0"设M(m,t
最佳答案:1.设点M为(t^2,t),则P为(t,t^2)即可求出y=-x^2