知识问答
最佳答案:X+Y=7XY=12由第一个方程得 x=7-y代入xy=12中(7-y)y=127y-y^2-12=0-y^2+7y-12=0y^2-7y+12=0(y-3)(
最佳答案:先对x求导y*dz/dx + z + x * dz/dx + y = 0所以dz/dx = -(z+y)/(x+y)同理得dz/dy = -(z+x)/(x+y
最佳答案:1、(Eular方程),做变换x=e^s,原方程可化为关于s的方程:D(D-1)y+Dy-y=0,其中Dy定义为dy/ds,D^2y定义为d^2y/ds^2.解
最佳答案:设y*=e^x是微分方程xy'+p(x)y=x的一个解,求此微分方程满足y=0,x=ln2的特解因为y*=e^x是微分方程xy'+p(x)y=x的一个解,故y=
最佳答案:所谓这个方程公共的解,就是说,要找一组解,无论a取什么样的值,都能使得这个方程成立.所以,要使得方程的左边值跟a无关(a+1)X-(a-1)Y+a-3=0可化为
最佳答案:微分方程xy'+p(x)y=x的一个特解为y^+=e^x 可求得p(x)=x(1-e^x)/e^x (1)将(1)代入微分方程xy'+p(x)y=x 可求出其齐
最佳答案:先用方程组前面的的减后面的得到y=m带回去得x=3m,再将x,y代入3x+2y=14得7m=14,∴m=2
最佳答案:2x-3y=5 8x-12y=20……(1)3x+4y=-1 9x+12y=-3……(2)(1)+(2)得:17x=17,X=1y=-1∴4x-6y-15m=1
最佳答案:利用隐函数的微分法求令F(x,y(x))=0.两边对x求导,得:dF/dx+(dF/dy)*(dy/dx)=0.若dF/dy0,则dy/dx=-(dF/dx)/
最佳答案:在笛卡尔平面上,二元二次方程ax^2+bxy+cy^2+dx+ey+f=0的图像是圆锥曲线.根据判别式的不同,也包含了椭圆,双曲线,抛物线以及各种退化情形此题不
最佳答案:由(1)已得:x=10+k,y=20-2k所以:M=3x+4y=3(10+k)+4(20-2k)=30+3k+80-8k=110-5k
最佳答案:先消去z,化为关于x,y,a的等式,看成x的一元二次方程,让判别式非负,得到关于y与a的不等式,再看成y的不等式,让判别式小于0,就可以得到a的范围我算出来是小