最佳答案:首先增广矩阵的秩一定不小于系数矩阵的秩(因为这只不过是增加了一个列向量)。若增广矩阵的秩大于系数矩阵,则可通过高斯消去法将系数对角化,这将有0=b≠0的情况,矛
最佳答案:化成行阶梯可判断方程组解的存在情况若求具体的解,最好化为行最简形
最佳答案:R(A)=2,R(B)=3,由于R(A)≠R(B),故而方程组无解.
最佳答案:根据我的经验,在没有特殊说明的情况下,如果答案简单,那就化到最简形.但一般的题目还是写成行阶梯型,因为一般标准答案都是行阶梯型.但你用最简形只要是对的也不会算你
最佳答案:化到最简以后,因为系数矩阵代表的是方程的系数前面的系数变成1,相当于你解方程把未知量的系数变成1一样,这样就可以更好的把自由未知量表示出来具体的建议你还是看一下
最佳答案:你所说的最简形是不是标准形?如果是的话,那么在你求解时,只要将方程组化简到行阶梯形就可以了.两者区别在于标准形是矩阵经过行初等变换和列初等变换得到的,行阶梯形只
最佳答案:D 正确.但在理论上是可以交换两列的, 只需记住每一列所对应的未知量, 最后结论再对应回来作为选择题, D 是正确的
最佳答案:(1) 如果方程的个数与末知量的个数相同的时候,你可以先通过求系数行列式不等于零时,原非线性方程组有唯一解这种情形的λ.再取λ使系数行列式等于零时,用增广矩阵来
最佳答案:用Cramer法则.非齐次线性方程组有唯一解的充要条件是系数矩阵的行列式不为0,换句话说就是你说的系数矩阵线性无关.而有解就说明等号右端的向量可以由系数矩阵的列
最佳答案:设A=(a1,a2,...,an),B=(a1,a2,...,an,b)因为A,B的秩相等,所以向量组a1,a2,...,an与向量组a1,a2,...,an,
最佳答案:设A=(a1,a2,...,an),B=(a1,a2,...,an,b)因为A,B的秩相等,所以向量组a1,a2,...,an与向量组a1,a2,...,an,
最佳答案:化行最简形 比 梯矩阵 有好处:计算简单,可直接得到特解和基础解系这是高斯消元法的关键一步高斯消元法包括"消元"和"回代" 分别对应梯矩阵与行最简形尽管不要求,
最佳答案:A,B秩相等,说明b可由A的列向量线性表出,所以B与A等价,他们可以相互表出.
最佳答案:唯一解的充要条件是R(A)=R(B)=r=n,即r=n【唯一秩等于变量的个数.】
最佳答案:不是把最后一行化成都是0, 这不一定是把增广矩阵用初等行变换化成梯矩阵此时可以判断出解的情况: 无解,唯一解,还是无穷多解若求通解, 最好化成行最简形看看这个能
最佳答案:首先,齐次线性方程组Ax=0必然有零解,当x都等于0时,方程组成立。我们要研究的是除了零解外,齐次线性方程组Ax=0还有没有非零解。Cramer法则来讲,在一定