知识问答
最佳答案:可导必连续,连续不一定可导,所以可导函数与连续函数的积函数一定是连续函数,但是不一定可导.例如:f(x)=1,可导;g(x)=|x|在x=0处连续但不可导,而f
最佳答案:说某函数在某一点可导就是图像上该点的切线斜率存在.说某一函数可导则说明在其定义域内,各点切线斜率都存在.随着你以后学习的不断加深,你会发现可导的意义不仅于此,在
最佳答案:对于函数的每一个有定义的点X(在有定义的区间内),函数的在X处左极限等于有极限等于函数在X的值,称为函数在X点连续.处处可导充要条件是每一个点都要满足连续条件.
最佳答案:函数f(X)可导,则其导函数为f'(X)y=f(2x)的导函数可以用复合函数求导的方法来求解y'=[f(2x)]'=f'(2x)*(2x)'=2f'(2x)其中
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
最佳答案:设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。这就是定义所以只要能求出导函数就有其极限点,而不是楼主
最佳答案:呵呵 多元函数可导啊~ 这么说吧 我们举一个最简单的例子 f(x,y)=X+Y 这个函数对于 x 和 y 的偏导(函)数 都是 1 对吧? 但是对于 x 的偏导
最佳答案:所以判别式应该>=0,即4-24a>=0,解得a=(2)函数f(x)在x=1处取得极值,即f'(1)=0,所以a=-4恒成立的题目解题思路基本都转化为求极值问题
最佳答案:冲击函数代尔塔不好表示,我就用f代替了.可以求导,f‘-(0)=f'+(0)=0.且函数连续.所以他的一阶导数和乃至n阶导数均为0.
最佳答案:设y=f(x)是一个单变量函数,如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导.如果一个函数在x[0]处可导,那么它一定在x[0]处
最佳答案:可导必然连续,但是连续不一定可导可导是建立函数连续的基础下的,但函数连续不一定可导,比如说分段函数y=-x+1(x1),这个函数在1点连续但不可导.说的还算清楚
最佳答案:函数在某一点是否是可导的条件是:在该点的左、右导数相等;函数在某一点是否连续的条件是:在该点左、右极限相等且等于该点的函数值.