最佳答案:=∑(n=1,∞)[3x^n+(-2x)^n]/n求导得:∑(n=1,∞)[3(3x)^(n-1)+(-2)(-2x)^(n-1)]=3/(1-3x)-2/(1
最佳答案:lim(n+1)|x|^(n+1)/n|x|^n
最佳答案:lim(n→∞)|[(2n+3)x^(2n+2)/(n+1)!]/[(2n+1)x^(2n)/n!]|=0x∈(-∞,+∞)拆项【e^x=∑(n=0~+∞)(1
最佳答案:把求和项里的x提出来一个s(x)/x=∑(n=1,∞)nx^(n-1)两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1
最佳答案:收敛域:主要是看前后两项的比值,小于1即可即lim 2nx^(2n-1)/[2(n-1)x^(2n-3)]=x^2
最佳答案:∑x^2n/(2n)!,(n:0→∞)│An+1/An│=│An+1/An│=x²/[(2n+2)(2n+1)]令上式为1,n→∞,R=x→∞,故收敛域为实数域
最佳答案:收敛半径1/2和函数(2/(1-2z))-(1/(1-z))
最佳答案:函数求两次导数,然后求和,
最佳答案:这里涉及两个函数(1)事先给定一个函数f(x)(2)根据f(x)构造一个Fourier级数,这是一个形式上的无穷项的和,和函数F(x)不一定存在.所以要判断它是