最佳答案:先求齐次的通解,据非齐次项,先设特解的形状,再代入非齐次方程求特解.可看一下书.如y’’+3y’=3x的特解的形状为cx^2+dx,代入y’’+3y’=3x得,
最佳答案:先求齐次的通解,据非齐次项,先设特解的形状,再代入非齐次方程求特解.可看一下书.如y’’+3y’=3x的特解的形状为cx^2+dx,代入y’’+3y’=3x得,
最佳答案:设u=Ca+Db为齐次方程通解,a,b为特解,C,D为常数.现设C,D为待定函数.对u求导数.令C'a+D'b=0 (1).对u求二次导数并带入非齐次方程得:C
最佳答案:这个不好说吧,书上有详细的.先求对应的其次方程的解即通解,再找一个特解,相加即是其解.至于这个特解一帮比较容易看出,比如指数函数.
最佳答案:这种题分为两种类型:1.不带有三角函数的.2.带有三角函数的.
最佳答案:由特解,r=1是二阶常系数齐次线性微分方程的特征方程的二重根,所以特征方程是r^2-2r+1=0,所以微分方程是y''-2y'+y=0.
最佳答案:y''+y=x^2先求齐次通解,就是求我用y''+y=0来表示了.特征方程,r方+1=0,r=0±i,齐次通解y=C1e^0xcosx+C2e^0xsinx=C
最佳答案:若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则非齐次方程:y" - p(x)*y' - q(x)*y =
最佳答案:通常情况下,求二阶常系数非齐次线性微分方程的特解有3种方法:①待定系数法 ②拉普拉斯变换 ③微分算子法虽然它们的解法过程形式迥异,但最后的特解形式一般情况下却是
最佳答案:二阶常系数非线性微分方程y''+ay'+by=r*e^x 的一个特解为y=e^2x+(1+x)*e^x你带回去得出a,b的值啊 应该是a=-3 b=2把它对
最佳答案:这个要具体方程;给你一个思路,先观察,找二阶齐次微分方程的通解,在加上一个特解就ok;
最佳答案:特征方程r^2-1=0r=±1齐次通解y=C1e^x+C2e^(-x)所以非齐次通解y=C1e^x+C2e^(-x)+1/x
最佳答案:y4=y2-y1=e^-x是其次的特解根据微分方程解的结构定理通解为:y=c1y3+c2y4+y1=c1x+c2(e^-x)+3+x^2
最佳答案:是非齐次线性微分方程吧y1,y2都是非齐次微分方程的特解,那么y1-y2就是对应的齐次微分方程的一个解y1=cos2x–¼xsin2x,y2=sin2x-¼xs
最佳答案:解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分
最佳答案:显然对应的特征方程的解为 正负i所以对应的方程是 y''+y=0
最佳答案:k的取值由λ决定.如果λ不是齐次方程的特征方程的根,k=0;如果λ是齐次方程的特征方程的单根,k=1;如果λ是齐次方程的特征方程的重根,k=2.当k的值确定了之
最佳答案:证:反证法!要证y1,y2之比不为常数,即证明y1,y2线性无关!假设y1,y2线性相关,设y2=ky1,因为y1,y2是二阶非齐次线性方程的特解,故它们都不是