最佳答案:x^2ydx=(1-y^2)(1+x^2)dy(1-y^2)/y*dy=x^2/(1+x^2)*dx两边积分:ln|y|-y^2/2=x-arctanx+C
最佳答案:(1 -1 -1 11 -1 1 -33 -3 -2 1)等价(1 -1 -1 10 0 2 -40 0 1 -2)等价(1 -1 -1 10 0 1 -20
最佳答案:首先判断(2,-1)|3然后找到方程的一个特解:(2,1),方法你可以使用碾转相除法得到.最后有方程的通解为:x=2+t,y=1+2t,其中t为整数.这三步可以
最佳答案:(1+x²)dy+xydx=0==>dy/y=-xdx/(1+x²)==>ln│y│=(-1/2)ln(1+x²)+ln│C│ (C是积分常数)==>y=C/√
最佳答案:dy/dx=y+1dy/(y+1)=dx通解为ln|y+1|=x+C
最佳答案:分离变量法:dy/y=x^2dx积分: ln|y|=x^3/3+C1得y=Ce^(x^3/3)
最佳答案:y=C1*cosx+C2*sinx通解就是C1和C2可以取任意值不确定解…OK
最佳答案:x''+b^2x=0特征方程:r^2+b^2=0r=土bi则通解为:y=c1cosbt+c2sinbt选A这种题是典型的常系数齐次线性方程,高数下册有详细介绍.
最佳答案:原方程的特征方程是r²-2r+5=0∵此特征方程的根是复数根 r=1±2i∴根据定理,原方程的通解是y=(C1cos(2x)+C2sin(2x))e^x (C1
最佳答案:二阶线性齐次方程的一般形式为:y''+a1y'+a2y=0,其中a1,a2为实常数. 我们知道指数函数e^(ax)求导后仍为指数函数.利用这个性质,可适当的选择
最佳答案:这个……第一题是不是错拉……按理说任意两个非齐次方程的解的差应该是对应齐次方程的解,但是按照这个带进去不太对啊…………第二题就是等比数列的求和?有等比求和公式,
最佳答案:特在所有的解中的任意一组解通所有的解(当然,这个不是定义,但是可以帮助你理解.)已知当x=x0,y=y0时方程ax+by=c左右相等所以,假设有一组解,其中x=
最佳答案:对于你说的方程组,可以解到用一个未知量表示其余三个未知其的情况,要确定解的话必须给出附加限定条件,如都是正整数解等
最佳答案:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A
最佳答案:令p=y'pp'+Ap+By+C=0 变成了p关于自变量y的微分方程p'+A=-(By+C)/p变成一阶微分方程解出他,然后带回变量到y关于x的函数即可通解应该
最佳答案:若是Y关于t的函数,从其数学本质上讲是利用解的叠加原理,通过把系数矩阵设成一个关于t的变量矩阵,寻求一个满足初始条件的t来求得通解的系数矩阵.从线性代数的角度讲
最佳答案:使用“实变量复函数”可以对方程求解(参见数学分析新讲,张筑生,北大出版社),解是两个“实变量复函数”.举例:求解复系数二阶齐次常微分方程y''-3iy'-2y=
最佳答案:推导时,先得到齐次微分方程的通解,此时,“e的指数∫p(x)dx积分”指的是一个不包含C的函数,因为齐次方程的通解是y=C*e的指数∫p(x)dx积分.然后再变