最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
最佳答案:条件不足,无法判断一个函数在点x1存在导数,在x1的去心邻域内未必可导,从而导函数未必存在,何来导数连续?即使存在导函数,也未必连续例如:f(x)=x^2sin
最佳答案:导函数是连续的.因为可导,所以对每一点x0,都有左导数=右导数即f'(x0-)=f'(x0+)=f'(x0)而这正是符合f'(x0)在x0处连续的条件.
最佳答案:比如对于y=|x|,在x=1处导函数存在,但在区间[-11]上,它是不可导的,因为在x=0处不可导.
最佳答案:证明处处可导,先要证明连续.连续定义为在某点邻域,左趋近等于右趋近等于函数值.证明时取区间内任意一点,取任意小量a,令随着x->x0即x-x0->0时,绝对值f
最佳答案:可导不一定连续 但连续一定可导 在分段点(如分段函数)左导数不一定等于右倒数,两者不等说明整个函数在该点不可导 但并不表明该点在某区间内不可导 熟悉定理在开区间
最佳答案:区间是开还是闭?可导必连续所以闭区间不可能又间断点开区间则可能在边界是间断点但这样边界并不在定义域内所以也是连续的
最佳答案:当然存在例如f(x)=x^2*sin(1/x),(x≠0时),f(0)=0导数在0时不连续
最佳答案:f(x)可导和它的导函数f`(x)连续没关系例子:当x≠0,f(x)=x^3/2sin1/x x=0时f(x)=0 根据定义可以验证f(x)在0可导,但f`(x
最佳答案:1.证明函数在整个区间内连续(初等函数在定义域内是连续的)2.先用求导法则求导,确保导函数在整个区间内有意义3.端点和分段点用定义求导4.分段点要证明左右导数均
最佳答案:连续:不间断,在某区间上某点的左右极限相等。先判断奇偶性,若为奇则函数无意义;再判断左右极限是否相等。可导:在区间上某点的左导等于右导。
最佳答案:首先函数可导但并没有说是函数连续,如果该函数不连续,即使区间上各处可导也可能不连续.
最佳答案:1.证明函数在整个区间内连续(初等函数在定义域内是连续的)2.先用求导法则求导,确保导函数在整个区间内有意义3.端点和分段点用定义求导4.分段点要证明左右导数均
最佳答案:1、函数的二阶导数就是该函数一阶导数的导数,所以函数二阶可导一定一阶可导2、一个函数在一个区间内一阶可导,二阶可导,分为一元函数和多元函数一元函数:可导等价于可
最佳答案:一切初等函数在其定义域上都是可导的,因此要判断一个函数在某个区间是否可导只需要看该区间是不是定义域上的子区间.而由于可导的函数必然是连续函数,因此一般来说可导函
最佳答案:可不可以通过判断导函数在一个区间内是否有定义来判断原函数在这个区间内是否可导---------当然可以.
最佳答案:不对 可导和连续没有必然的关系 你想如果函数在区间不连续它一样有导函数 例子是当区间有可去间断点时
最佳答案:1)证明一个一元函数在闭区间上连续就要证明在这个区间上的任意点x0处连续,即在x0处的左极限=右极限=在x0处的函数值2)在开区间上可导就要证明在这个区间上的任
最佳答案:不能.函数在(a,b)上可导,只能说明它在(a,b)上连续.至于函数在端点处是否可导,还须视具体函数而定.如 y=2x+1 在(0,1)上可导,它也在 [0,1