知识问答
最佳答案:解题思路:直接根据齐次线性方程组Ax=0基础解系所含线性无关的解向量个数等于未知数的个数与系数矩阵的秩之差,得到答案.由A为m×n矩阵,知Ax=0的未知数的个数
最佳答案:选A进行初等变换 矩阵A= 1 -λ -10 -2λ +6 2当λ =3时,方程组无解
最佳答案:解题思路:齐次线性方程组有没有非零解的判断,由其系数矩阵的秩来决定,这里就需要判断AB的秩.因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)
最佳答案:有解,则 R(A) = R(增广矩阵) = 2所以 AX=0 的基础解系含 3-2 = 1 个向量而 (0,1,1) -(-1,0,0)=(1,1,1) 是AX
最佳答案:证: 因为 r(A) = n-1所以齐次线性方程组AX=0 的基础解系含 n-r(A)=1 个解向量.所以AX=0的任一个非零解都是它的基础解系.因为 AA*=
最佳答案:2 1 -1 1 -31 1 1 0 1-3 -2 0 1 -2r1-2r2,r3+3r20 -1 -3 1 -51 1 1 0 10 1 3 1 1r1+r3
最佳答案:矩阵秩为1,因此解空间秩为2,令x2=0,x3=1,得x1=-1,于是第一个解向量为(-1,0,1);令x2=1,x3=-1,得x1=-1,第二个解向量为(-1
最佳答案:显然不对,Ax=0和Bx=0的解空间不一定有包含关系.举个例子A=0 0 00 1 00 0 1B=1 0 00 0 00 0 0
最佳答案:1 -1 2 30 1 0 -2 是一个四元一次方程组 但系数矩阵的秩为2 所以自由未知量的个数为n-2=4-2=2.0 0 0 0所以自由未知量个数为2.
最佳答案:证明:设 kη+k1ζ1+k2ζ2+...+kn-rζn-r = 0等式两边左乘A,由 Aη=b,Aζi = 0 得kb = 0.因为 AX=b 是非齐次线性方
最佳答案:齐次线性方程组的矩阵形式为:AX=0将A按列分块为 A=(a1,a2,...,an)则齐次线性方程组的向量形式为:x1a1+x2a2+...+xnan = 0所
最佳答案:选(A)Ax=0 => AA^TAx=0 => x^TA^TAA^TAx=0 => (A^TAx)^T(A^TAx)=0 => A^TAx=0 => x^TA^
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
最佳答案:直接加上β1或β2之一 也是通解方程组的通解不是唯一的你这个题目像是选择题注意 (β1+β2)/2 也是特解,(3β1+4β2)/7 也是特解(k1β1+k2β